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Abstract 
 
The Polyray Game Engine is written in Java and designed to provide a flexible and high performance 
framework for creating 2D and 3D games. Due to the modular design of Polyray, more than just basic 
2D and 3D is possible, the only limit is imagination. This document outlines its core design, focusing 
on efficient rendering techniques, modular architecture and design,  and support for custom rendering, 
objects, data, shaders and more. Special emphasis is placed on performance optimizations, such as 
efficient data structures, shader programming, and effective resource management. Polyray aims to 
balance ease of use with technical depth, making it suitable for both rapid prototyping and large-scale 
projects. 
 
The Polyray Game Engine introduces custom new inventions, such as an algorithm for high 
performance Real-Time spatial audio acoustics and a custom 2D lighting model. 
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1. INTRODUCTION 

1.1 BACKGROUND 

1.1.1 Game Engines 
 
According to the article “Game engine” posted on Wikipedia, last updated February 2018, game 
engines are the core software that handles most of the work with graphics, physics and audio. They 
usually come with an easy interfacing framework to get key and button inputs for control. While 
popular commercial game engines such as Unreal Engine or Unity come with an editor, the game 
engine itself is what powers the game, whether an editor is involved or not. 
 
While commercial game engines simplify development using intuitive editors and prebuilt systems, 
this abstraction can lead developers to overlook performance considerations. 
 
By first learning the fundamentals of graphics APIs like OpenGL or Vulkan, developers gain 
transferable skills that apply to any engine. This foundational knowledge equips developers to make 
informed decisions about rendering performance, rather than relying solely on engine-specific 
shortcuts. 
 
More and more game studios are starting to switch from commercial engines to custom made ones. 
The reason is that because commercial engines need to encapsulate almost all possibilities there are 
with types of games. A bunch of features are implemented which would never be used in some 
specific cases and only adds computational cost. Making a custom made engine ensures that the 
engine is specifically made for the games the studio makes which removes all bloat and unnecessary 
operations. 
 
And by far the most powerful side effect of making a custom built game engine is that one knows 
every little detail on how it is implemented and how to use it, and that eliminates the process of 
learning the engines terminology and use. So one is automatically an expert at it and knows every ins 
and outs. 
 

1.1.2 History of Game Graphics 
 
In the early days of computer graphics, rendering was limited by the capabilities of processors like the 
6502 CPU, which powered early systems like the Atari 2600. Graphics at the time were very limited, 
simple 2D sprites and tile-based graphics, with developers using low-level assembly code to manually 
draw each pixel to the screen. This was a long and painstaking process due to the hardware’s 
limitations, and rendering involved basic raster graphics, where images were drawn into memory 
line-by-line. 
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Figure 1. Rasterized Graphics from Microsoft Flight Simulator 1.0 
 
As hardware advanced, particularly with the introduction of more powerful CPUs like the Motorola 
68000 and early x86 processors, developers started experimenting with early 3D graphics. These 
efforts were primarily seen in vector-based games, where simple wireframes represented 3D objects 
and lines, or vectors connect points in the model. Games that use vector graphics often lack any kind 
of shading or depth perception beyond basic geometry. 
 

 
Figure 2. Vector Graphics from the Game Tempest 
 
The true shift to modern 3D rendering began in the late 1980s and early 1990s with the advent of 
rasterization. This process allowed 3D models to be broken down into individual triangles and 
projected onto a 2D screen, where they could be textured and lit in Real-Time. The introduction of 
graphics accelerators, such as the 3dfx Voodoo, revolutionized this process by offloading the 
computationally expensive task of rendering from the CPU to a dedicated GPU, allowing for complex 
scenes to be rendered at interactive frame rates. 

 
Figure 3. 3D Graphics with Texture Mapping In the Game Quake 3 
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1.1.3 Rendering 
 
Rasterization, the process of converting models into a 2D image, has been the cornerstone of 
Real-Time rendering since its early development. In the late 1980s and early 1990s, as 3D graphics 
emerged, the need for fast, efficient rendering techniques became crucial, especially for video games. 
Rasterization works by projecting 3D objects onto a 2D plane (the screen) and determining what color 
each pixel should be. 
 
The early days of 3D rendering involved simple, flat-shaded polygons and wireframes. As hardware 
advanced, developers began experimenting with more complex techniques, such as texture mapping 
and Gouraud shading, to create more detailed and realistic scenes. However, even as these innovations 
took place, hardware limitations still posed a major challenge to achieving Real-Time performance, 
leading to the development of various optimizations. 
 
In the 1990s as the demand for more complex and better graphics increased, various optimization 
techniques were developed. A prime example of this comes from Quake, a game that revolutionized 
Real-Time rendering through its innovative approaches. 
One such breakthrough was the Fast Inverse Square Root algorithm, which significantly improved the 
performance of lighting calculations and physics by speeding up operations of normalizing vectors. 
Another crucial optimization was portal-based culling, which reduced the rendering workload by only 
drawing what was visible to the player. This technique used portals and bounding volumes to 
determine visibility, a strategy that is still commonly used in modern game engines. 
 
 

1.2 PURPOSE 
 
The purpose of this project and document is to show that game engines are surprisingly easy to make. 
This game engine is designed for maximum modularity and flexibility which most commercial 
engines suffer from not being.  Furthermore, performance will be heavily prioritized which might 
make code more unreadable. 
 
Unity and Unreal are very statically made. The rendering, physics and audio is fully abstracted away 
from the user and replaced with high-level terminology for them. Anyone using Unity or Unreal may 
think that they have lots of control, but there are many cool tricks and optimizations that wouldn’t be 
possible with them which would be obvious and intuitive with a custom made engine. 
 
But even making a custom engine doesn’t ensure full control without constantly changing the engine 
code to add more features. So this project was an experiment to see how far the modularity of a game 
engine could be pushed without introducing too much complexity and bottlenecks. 
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1.3 RESEARCH QUESTIONS 
 
How hard is it really to make a custom game engine using OpenGL or any other Low-Level API? 
 
What is possible to do in a custom made engine that would otherwise be impossible in a commercial 
engine? 
 
 

1.4 LIMITATIONS 
 
Due to limited time working before the release of this document, more complex algorithms and 
optimizations won’t be completed, such as occlusion culling, shadow mapping in 3D and other 
graphics related features and optimizations. 
 
As such, while the engine is capable of rendering detailed scenes and performing essential 
calculations and handling for game mechanics, certain performance bottlenecks may be present in the 
rendering pipeline. Developers should be aware that additional steps, like implementing a custom 
renderer or implementing custom audio effects using Polyray Modular may be necessary for complex 
environments. 
 
 
 
 
 
 

2. METHOD 
 
The development of the Polyray Game Engine was guided by three core principles: Performance, 
Modularity, and Flexibility while ensuring minimal bloat and unnecessary code. To achieve this, the 
engine was designed with an efficient architecture that prioritizes control over every aspect. 
 

2.1 Performance Focus 
 
The engine was built with performance as a top priority. Written entirely in Java apart from 
performance critical code that is written in C++. It uses LWJGL and OpenGL and is carefully made 
from scratch to minimize unnecessary overhead and bloat, and maximize performance. By avoiding 
third-party dependencies (except LWJGL), the engine ensures full control over its internal processes, 
optimizing both performance and resource usage. 
 
Key optimizations include efficient memory management to reduce allocation overhead and low-level 
control over rendering processes using OpenGL for direct GPU communication. 
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2.2 Modularity and Flexibility 
 
The engine was developed to support a wide range of game types and mechanics without sacrificing 
performance. By adopting a modular architecture, individual systems such as rendering, physics, and 
audio can be modified or replaced without major structural changes. This design allows developers to 
extend functionality while maintaining consistent performance. 
 
To promote flexibility, the engine features a customizable rendering pipeline that can adapt to 
different visual styles or performance needs, along with well-defined interfaces that allow developers 
to extend functionality as required. 
 
 

2.3 Real-Time Audio Simulation 
 
To enhance audio realism, the engine includes a high-performance Real-Time audio simulation 
algorithm called DBR (Dynamic Buffer Redistribution). This algorithm simulates audio delay and 
volume with extreme precision to generate ultra realistic acoustic effects with minimal latency. 
For advanced spatial audio, an extension called DCDBR (Dual-Channel Dynamic Buffer 
Redistribution) was developed. This extension enables precise 3D sound positioning, where audio 
sources can reflect off walls, creating an immersive and lifelike audio experience that adapts to 
environmental geometry in Real-Time. 
 
 

2.4 Ensuring Quality Control 
 
By implementing all systems from scratch, the engine maintains complete control over its internal 
logic. This approach ensures that performance optimizations, bug fixes, and feature implementations 
can be handled directly, reducing the unnecessary complications with using external libraries or 
frameworks that may introduce performance bottlenecks, compatibility issues or different naming 
conventions which only slows development speeds. 
 
With this combination of custom development, efficient algorithms, and a modular structure, the 
Polyray Game Engine achieves a good balance of performance, flexibility, and minimal bloat. 
 
 
 
 
 
 
 
 
 
 
 

5 



Java

3. POLYRAY GAME ENGINE 
 

3.1 RENDERING 
 

3.1.1 Window 
 
In Polyray, the window is created and managed by the GLFW library. GLFW is chosen for ease of 
use, robustness and support for cross-platform compatibility, making it a good choice for Polyray’s 
design aims. The window class is called GLFWindow and has a user-friendly interface for window 
creation and event handling such as keyboard inputs and the ability to hide the cursor.​
 
Initializing a window in Polyray doesn’t require much code, which allows for quick setups. The 
example shown below is an example of how to create a window that is non-exclusive fullscreen and 
without a title bar. 

public GLFWindow w; 
 
public Example() { 
    // Create the window object and set the title of the window to "Title" 
    this.w = new GLFWindow("Title"); 
 
    // Initialize the window with non-exclusive fullscreen and no title bar 
    w.createFrame(500, 500, false, true, false); 
 
    // While the window is open, run the game loop 
    while(w.isWindowOpen()) { 
        // Update the window to process user inputs and update the frame 
        w.update(); 
   } 
} 
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Polyray lets developers easily implement handling for key- and mouse events. The example shown 
below shows how to handle mouse movement and key presses. 

this.w = new GLFWindow("Title") { 
    // Override keyPress to implement logic for handling key presses​
    @Override 
    public void keyPress(int key) { 
        if(key == GLFW_KEY_SPACE) { 
            System.out.println("Jump!"); 
        } 
    } 
    // Override mouseMove to implement logic for handling mouse movement 
    @Override 
    public void mouseMove(float x, float y) { 
        System.out.println("Mouse x: " + x + ", y: " + y); 
    } 
}; 

 
Polyray also supports other events, letting the user override methods like keyRelease, 
mousePress, mouseRelease, mouseDrag, scroll, effectChanged (See Section 3.1.10 for 
more information on post-processing effects) and windowResized. 
 
There are other methods that outputs the current state of the window like isWindowOpen and 
isWindowFocused which returns whether or not the window is the current one the user is interacting 
with. 
 
 

3.1.2 Input 
 
Just like Unity, Polyray has an Input class which has one method for getting the current state of a 
key (if it is pressed or not). It works side by side with the GLFWindow class, which updates the key 
states during runtime. The example below is how usage of the class would look like. 

// Get the current state of the 'w' key 
if(Input.getKey(GLFW_KEY_W)) {​
    // Move forward 
} 

 
Furthermore, Polyray has built-in support for controllers and can handle up to 16 controllers per 
device simultaneously. The setup of controller inputs is a bit more tricky though. It supports both 
Xbox and Playstation controllers with explicit button definitions for both. An example is 
“BUTTON_XBOX_A” and “BUTTON_PLAYSTATION_X”. The class for managing controllers is called 
ControllerInput. Which, unlike the Input class, doesn’t need a window to update the controllers, 
it is instead done manually as shown in the example below. 
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public ArrayList<Integer> controllers; 
 
public Example() { 
    // Set up controllers 
    ControllerInput.setup(); 
    this.controllers = ControllerInput.getActiveControllers(); 
} 
 
// Call this method from in the game loop 
public void update() { 
    ControllerInput.updateControllers(); 
    if (!controllers.isEmpty()) { 
        // Get the first controller 
        int c = controllers.get(0); 
 
        // Get forward and backward movement 
        float ws = 
ControllerInput.getJoystickPosition(c,ControllerInput.JOYSTICK_LEFT_Y_AXIS); 
 
        // Get left and right movement 
        float ad = 
ControllerInput.getJoystickPosition(c,ControllerInput.JOYSTICK_LEFT_X_AXIS); 
 
        if(ControllerInput.getButton(c, ControllerInput.BUTTON_XBOX_A)) { 
            System.out.println("jump!"); 
        } 
    } 
} 

 
 
 
 
 

3.1.3 Shader Programs and Preprocessing 
 
In Polyray, Shader Programs are used to manage and execute the graphical operations written in 
GLSL. The engine provides an abstraction to simplify shader compilation and linking, making it 
easier to handle various shader stages (vertex, fragment and compute) in Real-Time rendering.  
 
The ShaderPreprocessor class in Polyray provides useful utility functions designed to simplify 
the management and creation of shader code and preprocessor directives. It allows developers to 
compose shader code from multiple sources and dynamically set values in the shader from Java, 
creating a flexible and powerful environment for shader management. 
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One of the most useful features of the ShaderPreprocessor is the ability to append code from 
external files into a base shader file. This helps modularize shader code, promoting reusability and 
maintainability. For example, a function or a set of common utilities can be placed in a separate file 
and then appended into the main shader file. The example below illustrates this feature using a utility 
file “Addition.glsl” being appended to the “Shader.glsl” file. 

// In "Addition.glsl" 
float add(float a, float b) { 
    return a + b; 
} 
 
// In "Shader.glsl" 
#append "Addition.glsl"; 
 
void main() { 
    // Uses the add function from the "Addition.glsl" file 
    float c = add(10.0, 20.0); 
} 

 
The ShaderPreprocessor class also allows developers to dynamically set values in the shader 
code, such as constants or buffer bindings. These values can be set from the Java side, allowing for 
greater flexibility when adjusting shader behavior in Real-Time without modifying the shader code 
itself or creating several similar shaders for only small differences. 

ShaderPreprocessor proc = ShaderPreprocessor.fromFiles("Shader.glsl"); 
proc.appendAll(); // Apply the appends 
proc.setFloat("A_VALUE", 10.0f); // Set a value for A_VALUE 
proc.setFloat("B_VALUE", 20.0f); // Set a value for B_VALUE 
ShaderProgram shader = proc.createShader("Name", 0); // Create the shader 

 
Polyray has built-in files that can be appended such as “GammaCorrect.glsl”, “PBRLighting.glsl”, 
“Camera3D.glsl”, “Noise.glsl” and more. 
 
 

3.1.4 Shader Buffers 
 
In Polyray, The ShaderBuffer class abstracts the OpenGL buffer object system, simplifying the 
process of creating and managing buffer data. The example shown is a shader buffer in GLSL. 

layout(std430, binding = VALUE_IDX) buffer ValueBuffer { 
    float values[]; 
}; 
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Polyray has another utility class called BindingRegistry, which simplifies the management of 
buffer binding points and helps prevent binding overriding. The example below shows how to 
properly set the binding point and set the buffers data. 

ShaderBuffer valueBuffer = new ShaderBuffer(GL_SHADER_STOGRAGE_BUFFER, 
GL_STATIC_DRAW); 
// Send data to the GPU 
valuebuffer.uploadData(new float[] {0.0f, 1.0f, 2.0f, 3.0f}); 
// Bind the shader buffer to a binding point 
int binding = BindingRegistry.bindBufferBase(valueBuffer); 
// Dynamically set the VALUE_IDX to the binding point of the buffer 
ShaderPreprocessor proc = ShaderPreprocessor.fromFiles("Shader.glsl");​
proc.setInt("VALUE_IDX", binding); // Set the binding point to the shader 
ShaderProgram shader = proc.createShader("Name", 0); 

 

3.1.5 Vertex Buffer and Instancing 
 
A main aspect of polyray, which sets it apart from other game engines, is the modular design of vertex 
buffers. Instead of having fixed vertex buffer layouts, Polyray allows the user to easily make vertex 
buffer layouts using the VertexBufferTemplate class. When a template is made, it can be used 
multiple times to create vertex buffer objects with the same layout of data. Because of how Polyray is 
designed, such templates are made easily. An example that can be found in Polyray’s built-in vertex 
and instance classes, of how a VertexBufferTemplate is set up is shown below. 

// In Vertex3D 
public static final VertexBufferTemplate VBO_TEMPLATE = new 
VertexBufferTemplate(false) 
        .addAttribute(VertexAttribute.VEC3) 
        .addAttribute(VertexAttribute.VEC3) 
        .addAttribute(VertexAttribute.VEC2); 

 
A vertex buffer doesn't just store vertex data, it can also hold instance data. The 
VertexBufferTemplate class handles this distinction in an elegant way. With a simple true or 
false argument, it can easily switch from holding vertex data to instance data. This makes it easy to 
define whether or not a template is intended for vertices or for instances. Below is an example of an 
instance template, notice the true argument. 

// In Instance3D 
public static final VertexBufferTemplate VBO_TEMPLATE = new 
VertexBufferTemplate(true) 
    .addAttribute(VertexAttribute.VEC4).addAttribute(VertexAttribute.VEC4) 
    .addAttribute(VertexAttribute.VEC4).addAttribute(VertexAttribute.VEC4); 
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3.1.6 Textures and Texture Arrays 
 
Polyray supports both Textures and Texture Arrays, making texture management simple. The 
TextureUtils class helps create basic textures easily. Polyray has two texture classes: Texture, 
which manages texture data and integrates with Java's Graphics2D for drawing, and GLTexture, 
which handles GPU utilization. GLTexture can upload texture data directly from a Texture object. 
The example below shows two ways to create a GLTexture. 

// Method 1 creating a empty texture of size 128x128 
GLTexture tex = new GLTexture(128, 128, GL_RGBA, GL_RGBA8, false, false); 
// Method 2 creating a GLTexture from a existing Texture object 
Texture texture = new Texture(128, 128); // Example texture 
GLTexture tex = new GLTexture(texture, GL_RGBA8, false, flase); 

 
There does exist another texture class called GLTextureMSAA, however, it is only used with the 
respective GLFramebufferMSAA, it is not meant for usage outside of that. 
 

3.1.7 Framebuffers 
 
Framebuffers in Polyray are easy to use. A framebuffer in Polyray is called GLFramebuffer and has 
similar properties to GLTexture. A GLFramebuffer has an internal texture for where the 
framebuffer's color data is stored. That texture could then be used in all kinds of applications such as 
post-processing, windows inside games etc. The example below shows how a framebuffer is set up 
and how to access the internal render texture. 

GLFramebuffer framebuffer = new GLFramebuffer(128, 128); 
GLTexture render = framebuffer.render; 

 
For better quality, there exists a GLFramebufferMSAA for Anti-Aliasing with a customizable sample 
count. The example below is how a GLFramebufferMSAA is created. 

// 16x MSAA 
GLFramebufferMSAA framebufferMSAA = new GLFramebufferMSAA(128, 128, 16); 
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3.1.8 Lighting System 
 
Polyray excels in its lightning model. Previously, it used a simple Blinn Phong model, which resulted 
in a plastic-like look and wasn’t that physically accurate. After some experiments, a version of PBR 
lighting was chosen for its performance and physical accuracy. 
 

 
Figure 4. Comparison of Blinn-Phong (left) and PBR (right) lighting models. Image by Alex Lindgren. 
 
Another feature with Polyray’s implementation of PBR is the inclusion of ACES Tonemapping and 
Gamma correction. By having those, it prevents excessive bright lights from saturating and instead 
compresses the color range into HDR so that bloom and other features can be implemented. 
 

 
Figure 5. Comparison of without ACES Tonemapping (left) vs. with ACES Tonemapping and gamma correction (right). 
Image by Alex Lindgren. 
 

 
Figure 6. Showcasing 3D Point lights in a Wheat Field where 
one light’s color is the complement of the other. Image by Alex Lindgren. 
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Figure 7. Demonstrating the built-in PBR lighting in a testing 
scene of the game The Uncles of The Forest. Courtesy of Polyray Games. 
 
For 2D, Polyray has a custom implementation for lighting. Although not yet implemented in the main 
engine, it offers a highly flexible system for different types of lights. The light types implemented 
include point lights, directional lights, area lights. The lighting also has volumetric lighting and 
shadow casting. 
 

 
Figure 8. Showcasing Area light and Point lights as a door 
and candles in Platformer 2D. Courtesy of Polyray Games. 
 

 
Figure 9. Showcasing shadowcasting using HDDA and a directional 
light as a flashlight in Platformer 2D. Courtesy of Polyray Games. 
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3.1.9 Render Objects 
 
The RenderObject class in Polyray is part of the builtin package which is a simple implementation 
of the modular RenderObjectBase class. The class serves as a foundation for rendering objects in 
Polyray and brings together GLTexture, VertexBufferTemplate and ShaderProgram classes. 
The RenderObject class takes in two VertexBufferTemplates, a ShaderProgram and 
optionally a GLTexture or a Texture. The example below shows a full implementation of creating 
a RenderObject without a texture. 

// u is an instance of a Renderer3D 
// get the buffer binding of the camera 
int camIdx = u.getCameraTransformBinding(); 
 
// get the buffer binding of the environment 
Background b = u.getBackground(); 
int envIdx = BindingRegistry.bindBufferBase(b.environmentBuffer); 
 
// Create a material with the default PBR Lighting model 
Material mat = new material(camIdx, envIdx); 
mat.setRoughness(0.5f); 
mat.setMetallic(0.5f); 
mat.setF0(new Vector3f(0.05f, 0.05f, 0.05f)); 
 
// The same material can be used in multiple objects with different textures 
for example 
RenderObject object = new RenderObject(mat.getShader(), 
Vertex3D.VBO_TEMPLATE, Instance3D.VBO_INSTANCE); 

 

3.1.10 Post-Processing 
 
Post-Processing in Polyray works by rendering the scene on a framebuffer, then the texture is used as 
the input to the PostProcessing class, and the output is then finally rendered as a full screen quad. 
The current implementation doesn’t support any custom post processing effects and only has 19 
built-in effects, which will be fixed in later versions though. 
 

 
Figure 10. Showcasing one built-in post processing shader 
effect with maximum strength in The Uncles of The Forest. 
Courtesy of Polyray Games. 
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3.1.11 Full Rendering Pipeline 
 
Polyray uses a highly efficient rendering pipeline that prioritizes minimal overhead. The pipeline is 
designed to run in Real-Time, optimizing GPU communication. What follows is a detailed breakdown 
of how the pipeline functions at runtime for the built-in renderers and render objects. 
 
The beginning of each render begins with uploading global data, such as camera transforms, 
projection matrices etc. This step is shown below, how global data is uploaded in the Renderer3D 
class. 

createPerspectiveMatrix(FOV, (float) width / height, minRendDist, 
renderDist, projection); 
FloatBuffer cameraData = FloatBuffer.allocate(32); 
cameraTransform.toFloatBuffer(cameraData); 
cameraData.put(projection.array()); 
cameraTransformBuffer.uploadData(cameraData.array()); 
uiTransformBuffer.uploadData(uiTransform.toFloatBuffer(FloatBuffer.allocate(
12), true).array()); 
 

 
When rendering the objects the renderer iterates through all objects to see which should be rendered. 
This is controlled by the doRender flag set on each object. If the object’s flag is true and the object 
has content to render (not marked as clear or removed), the object is submitted for rendering. 

Iterator<RenderObjectBase> iter = objects.iterator(); 
while (iter.hasNext()) { 
    RenderObjectBase object = iter.next(); 
    if (object.isRemoved()) { 
        iter.remove(); 
        continue; 
    } 
    if (object.isClear() || !object.doRender) { 
        continue; 
    } 
    ShaderProgram shader = object.getShader(); 
    shader.use(); 
    object.render(); 
    shader.unuse(); 
} 
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For each valid object that should be rendered, the renderer calls the object.render() method. In 
the built-in implementation, it allows for both textured and untextured objects. A draw call is made to 
render the object, which in the case of the RenderObject class, is glDrawArraysInstanced. 

@Override 
public void render() { 
    if (texture != null) { 
        glActiveTexture(GL_TEXTURE0); 
        texture.bind(); 
    } 
    glBindVertexArray(vao); 
    glDrawArraysInstanced(mode, 0, numVertices, numInstances); 
} 

 
The API calls that get sent to the GPU during runtime would include a header with uploading global 
data such as UBOs or SSBOs. After that there would be a series of repeating blocks containing each 
object being rendered, ending with a buffer swap call and an event polling call. What follows is what 
the complete render would look like. 

// A header concisting of uploading UBOs etc. As an example, a single UBO: 
glBindBuffer 
glBufferData 
 
// Objects made of a optional texture, a shader usage and a vao binding 
// As an example, a object without a texture 
glUseProgram 
glBindVertexArray 
glDrawArraysinstanced 
glUseProgram 
 
// More objects being rendered here 
 
// End of rendering, swapping buffers and polling events 
glfwSwapBuffers 
glfwPollEvents 
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3.2 AUDIO 
 

3.2.1 Sound Processing Handler 
 
Polyray uses a modular design for applying audio effects, built around the SoundEffector class. 
This design allows developers to add and combine effects for complex, rich and dynamic audio 
experiences for true immersiveness. 
The core of Polyrays audio system is the SoundEffector class, it handles applying effects and 
encoding and decoding PCM wav data. Using the addEffect method present in the 
SoundEffector class, developers are able to add effects to apply. 
 
The example below shows how effects are added and how effects are applied. 

SoundEffector effector = new SoundEffector(2, 4); 
 
// Decrease the volume by 50% 
effector.addEffect(new VolumeEffect(0.5f), 0); 
 
 
byte[] buffer = new byte[4096]; 
 
// "in" is a AudioInputStream 
// "out" is a SourceDataLine 
while(in.read(buffer) != -1) { 
    out.write(effector.nextBuffer(buffer, 0.0f), 0, buffer.length); 
} 
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3.2.2 Sound Effects 
 
Polyray offers a handful of built-in common audio effects which speeds up development. For custom 
effects, Polyray offers a user-friendly interface called Effect. The example below shows how the 
Effect interface looks like and following that is how the built-in VolumeEffect implements it. 

public interface Effect { 
    public void computeRight(int[] channel); 
    public void computeLeft(int[] channel); 
    public void onStart(); 
    public void onFinnish(); 
} 

 

public class VolumeEffect implements Effect { 
    private float volume, prevVolume; 
    public VolumeEffect(float volume) { 
        this.volume = volume; 
        this.prevVolume = volume; 
    } 
    public void setVolume(float volume) { 
        this.volume = volume; 
    } 
    @Override 
    public void computeRight(int[] channel) { 
        compute(channel); 
    } 
    @Override 
    public void computeLeft(int[] channel) { 
        compute(channel); 
    } 
    @Override 
    public void onStart() {} 
    @Override 
    public void onFinnish() { 
        this.prevVolume = this.volume; 
    } 
    private void compute(int[] channel) { 
        float delta = volume - prevVolume; 
        for(int i = 0; i < channel.length; i++) { 
            channel[i] *= prevVolume + (float) i / channel.length * delta; 
        } 
    } 
} 
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The earlier versions of the sound engine didn’t have an onStart and onFinish and they were added 
solely due to support interpolating values across buffers of audio. Otherwise, if values would change 
rapidly, loud artifacts or clicks would be present in the audio. 
 

 
Figure 11. A Visualization of Linear Interpolation vs. 
Nearest. Image by Alex Lindgren. 
 
 
 
 
 

3.2.3 DBR and DCDBR for Real-Time acoustics 
 
With Polyray comes the invention of a high performance Real-Time acoustics audio effect. The effect 
is separated into two stages, one stage of collecting samples and the other of processing. 
 
The first step is not included and is instead expected to be implemented by the developers, although 
files with pre collected samples exist which can be easily loaded in the project using the 
loadDBRData method. Future updates will address that and supply a sample collector. 
The audio processing step is included in the engine as the DBREffect and DCDBREffect classes. 
The step consists of taking an input audio buffer, distributing them in a larger buffer, summing up the 
audio, taking a section from the beginning of the larger buffer (which is the output audio) and finally 
shifting the larger buffer down to fill the section that was taken. 
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C/C++

An optimized version of this algorithm in C++ is in the example below using AVX and is integrated 
into Polyray using JNI. The current implementation with a prebuilt dll only works on x86-64 
architecture and is specifically fine tuned for specific hardware. 

#include <cstdint> 
#include <cstring> 
#include <immintrin.h> 
 
void DBR(float* buffer, int& bufferSize, float* outputRight, float* 
outputLeft) { 
    for(int i = 0; i < sampleCount; i++) { 
        int delay = delaysI[i]; 
 
        float* dstR = collectorRight + delay; 
        float* dstL = collectorLeft + delay; 
 
        __m256 mulR = _mm256_set1_ps(volumesR[i]); 
        __m256 mulL = _mm256_set1_ps(volumesL[i]); 
        #pragma GCC unroll 8 
        for (int i = 0; i < bufferSize; i += 8) { 
            float* src = buffer + i; 
            __m256 inVec = _mm256_loadu_ps(src); 
            _mm256_storeu_ps(dstR, _mm256_fmadd_ps(inVec, mulR, 
_mm256_loadu_ps(dstR))); 
            _mm256_storeu_ps(dstL, _mm256_fmadd_ps(inVec, mulL, 
_mm256_loadu_ps(dstL))); 
            dstR += 8; 
            dstL += 8; 
        } 
    } 
 
    int len = bufferSize * sizeof(float); 
 
    std::memcpy(outputRight, collectorRight, len); 
    std::memcpy(outputLeft, collectorLeft, len); 
 
    int size = (collectorSize - bufferSize) * sizeof(float); 
    std::memmove(collectorRight, collectorRight + bufferSize, size); 
    std::memmove(collectorLeft, collectorLeft + bufferSize, size); 
 
    std::memset(collectorRight + (collectorSize - bufferSize), 0, len); 
    std::memset(collectorLeft + (collectorSize - bufferSize), 0, len); 
} 
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3.3 PHYSICS 
 
Polyray mainly uses point mass physics, the point mass class is called Particle. The Particle 
class is an extension of the PhysicsObject class that implements mass and force calculations. 
 
Polyray’s physics has premade, highly optimized constraints for particle physics which simplifies, 
optimizes and strengthens the normal way of point masses connected by lines to form structures. 
Those constraints include ParticleLine, ParticleLineN, ParticlePlane and 
ParticleSphere. 
 
Here is an overview of what the constraints are trying to solve for. 

●​ ParticleLine keeps two particles the same distance from each other. 
●​ ParticleLineN keeps multiple particles on one line with a custom spacing between each 

particle. 
●​ ParticlePlane keeps all particles on a plane. 
●​ ParticleSphere keeps particles on the surface of a sphere. 

 

4. DISCUSSION 
 
Polyray, in its current state, is far from finished. It is in active development, bug patches and feature 
implementation will be addressed in future updates. By incorporating improved rendering techniques, 
smarter resource management, and enhanced culling algorithms to reduce unnecessary computations, 
such limitations could be minimized. Until then, users may need to rely on creative solutions to 
maintain stable frame rates in much larger projects. 
 
Why make a Custom Engine? 
 
Common engines such as Unity, Unreal Engine and Godot all have one issue, that is how generalized 
they are. They might have thousands of features that suit most games’ needs. However, when it comes 
to memory usage and performance, due to how generalized they are, they typically run slower and use 
more memory. That’s because all those features and generalizations account for things that might be 
added in certain games. But for those games that don't use that feature, they still have to do the same 
calculations for something that isn’t necessary.​
​
That is one of the benefits of custom engines. They don’t have to over-generalize and account for all 
possible combinations and outcomes. Instead they can just include what is needed for the specific 
game which removes the bloat that common engines have.​
 
​
Why Aren't More Games Running on Custom Game Engines?​
 
Due to how complicated it usually is to create a game engine from scratch, it is often much faster and 
cheaper to go with premade engines. It is very uncommon for games to use anything other than 
premade engines. Only in certain cases where the premade ones don't cut it or the game is too 
complex does studios opt for custom made due to the benefits mentioned before at the cost of time 
and complexity. 
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6. ENGINE SHOWCASE 

 
Figure 12. Demonstrating the use of built-in PBR 
lighting with subsurface water scattering and water 
reflections in 237. Courtesy of Polyray Games. 
 

 
Figure 14. Showcase of realistic subsurface scattering in 
snow, with deeper creases appearing blue due to sunlight 
absorption in 237. Courtesy of Polyray Games. 
 

 
Figure 16. Showcasing a Ray Tracer with transparent 
glass built using Polyray. Image by Alex Lindgren. 
 

 
Figure 18. Showcase of many point lights in a 
platforming game using Polyray. Image by Alex 
Lindgren. 

 
Figure 13. Demonstration of the game engine’s capability 
to render dense forests efficiently in 237. Courtesy of 
Polyray Games. 
 

 
Figure 15. Showcasing a highly efficient greedy meshing 
in a voxel game with a fractal surface using Polyray. 
Image by Alex Lindgren. 
 

 
Figure 17. Showcasing a room rendered using a Ray 
Tracer built using Polyray. Image by Alex Lindgren. 
.

 
Figure 19. Showcasing a Ray Marcher rendering a 
mandelbulb using Polyray. Image by Alex Lindgren. 
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Figure 20. Demonstrating Polyrays performance by 
rendering 20 Million instances in Real-Time. Image by 
Alex Lindgren. 
 

 
Figure 22. Showcasing 200 000 grass blades being 
rendered and simulated in Real-Time in Rocket Powered 
Cripple Arena. Image by Alex Lindgren. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 21. Showcasing an old version of The Uncles of 
The Forest rendering thousands of instanced trees and 
grass. Courtesy of Polyray Games. 
 

 
Figure 23. Showcasing Marching Cubes rendering over 2 
Million Triangles in Real-Time. Image by Alex Lindgren. 
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